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Project Goals  “What new science would be possible if you had ALL the data?”  
As simulations generate ever-increasing amounts of data, there are correspondingly richer oppor-
tunities for analysis and scientific discovery—discoveries that will be missed if most of the data 
must be discarded before it is analyzed.  Because future exascale architectures will be increasingly 
storage-limited, it will not be possible to save the vast majority of simulation data for later analysis, 
requiring analysis to occur “in-situ” within the simulation.  However, existing in-situ data analysis 
frameworks provide little or no support for one of the most sophisticated forms of data science:  
probabilistic statistical modeling or uncertainty quantification (UQ), and the accompanying chal-
lenge of inference—fitting those statistical models to massive simulation output.  Our goal is to 
develop the fundamental statistical algorithms and computer science needed to perform statistical 
inference in-situ (in HPC simulations) to the full stream of data those simulations generate.  
Consider the mission science challenge of quantifying the 
probability of events in predictive HPC simulations, and un-
derstanding the underlying factors influencing the likelihood 
of these events.  Examples include the future risk of extreme 
weather events damaging population centers, or of extreme 
electron flux events in solar storms damaging satellites. 
To understand why this is a statistical inference challenge, 
turn to questions that we cannot yet adequately answer:  How 
will the frequency of blizzards change as the climate warms 
(Fig. 1)?  How much of this change is attributable to sea ice 
retreat, vs. surface warming, vs. enhanced moisture 
transport?  How do the statistics of turbulent plasma flows 
change as a function of solar cycle or prior history of the 
magnetospheric state (Fig. 2)?  The tools needed to answer 
these questions are statistical models:  probability density 
estimation, extreme value analysis, nonstationary spatial and 
time series modeling, regression and covariance analysis to 
quantify the sensitivity of effects to causes, etc.  The infer-
ence algorithms used to fit these statistical models to data 
include Bayesian inference and Monte Carlo sampling, but 
they currently only work offline, on highly-reduced data. 
The above grand challenge questions, by contrast, require all 
the data to answer.  We are asking statistical questions down to the individual grid cell and near-
timestep level in exascale simulations, looking for subtle statistical differences in probability dis-
tributions at different locations and times, and the dependence of event frequencies on vaguely-
defined phenomena that extend throughout a vast 3D domain (such as mesoscale weather for-
mations or geomagnetic substorm injections).  In such settings, and when we are looking to quan-
tify potential dependencies of any data point with any other, we cannot simply identify all the 
relevant features of interest ahead of time.  Without new algorithms and computer science to infer 
or fit sophisticated statistical models in-situ, to all of the simulation data as it is being generated, 
modern data science will be left behind in the exascale revolution. 
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Figure 1. (a) Blocking frequency (% per total days) HadGAM absolute values (b) blocking frequency difference between NUGAM
and HadGAM (% per total days) (c) blocking frequency difference between NUGAM and NUGAM with HadGAM orography
(% per total days) (d) blocking frequency difference between HadGAM and ERA-40 (e) blocking frequency difference between
NUGAM and ERA-40 (f) blocking frequency difference between NUGAM with HadGAM orography and ERA-40.

is not the main reason for the improvement in the
model climatology.

Following Scaife et al. (2010), we now assess
whether the increase in European blocking frequency
is due to changes in the climate mean or to changes in
the time-varying part. A probability density function
(PDF) of the blocking index (BI) is able to show
which changes occur (Figure 3). To construct this,
a point is chosen in the Euro-Atlantic region where

the maximum change of blocking frequency occurs
between the two model resolutions. This figure shows
that, in addition to a mean difference, the shape of the
two distributions is also different, which indicates a
difference in variability in the two model resolutions.
Blocking occurs when BI is >0, so the blocking
frequency is related to the area under this part of the
curve. The curve is wider with the higher resolution,
signalling an increase in variance and a decrease in
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Figure 1. Phenomena in simulation data, 
such as atmospheric blocking events lead-
ing to blizzards and cold snaps,56 exhibit 
complex patterns of spatiotemporal varia-
bility.7  Sophisticated statistical inference 
is required to identify relationships be-
tween such events and changing environ-
mental conditions.  But it is currently im-
possible either to store the data needed to 
fit such a statistical model offline, or to fit 
it online in the simulation. 
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Background and Statement of Problem 
There is an increasing disconnect between state-of-the-art 
statistical inference applications and the analyses that sci-
entists currently can perform.  This disconnect exists be-
cause (1) HPC I/O limitations force analysis to occur in-
situ; (2) in-situ data reduction loses too much information 
for inference, and forces inference algorithms to be de-
signed around the needs of data reduction, rather than the 
needs of science; and (3) existing inference methods pri-
marily work offline.  Bottlenecks to in-situ inference are: 
(B1) inference methods are not scalable for HPC 
(B2) software supporting in-situ programming is cumber-
some and inefficient for advanced data science 
As a result, even simple in-situ statistical analyses are ma-
jor programmatic activities requiring teams of data scien-
tists, computer scientists, and model developers working 
to implement complex, model-specific pipelines of data 
reduction and inference, rather than something a single 
data scientist could code and insert in a model. 
Examples of potential inference applications include (1) 
UQ for complex multiscale data, identifying probabilistic 
relationships between phenomena across scales that 
would be lost in any plausible data reduction scheme; (2) generative modeling or model reduction, 
where the goal is to synthesize new examples of the system response that statistically “behave 
like” the simulation with high fidelity (e.g. stochastic weather generators,87,47 turbulence emula-
tors93); (3) intelligent sampling or steering of simulations towards interesting behavior.  Existing 
in-situ data reduction approaches do not produce the information needed to perform this kind of 
inference.  They focus on computing statistics like means, variances, and correlations; feature ex-
traction, like turbulent eddies and dark matter halos;91,41,58 and visualization.1,26,27,28  Any further 
postprocessing, such as statistical modeling, occurs offline on these reduced data features.40,47  
This presents two problems for statistical inference.  The first is inference quality:  It assumes that 
nothing is lost during the in-situ data reduction step.  However, as we argued above, this premise 
is untenable: as the scientific questions we ask become more complex, statistical methods will 
need to model increasingly subtle relationships within ever-larger data sets.  The second problem 
is scientific productivity: This paradigm forces labor-intensive workflows requiring one-off, appli-
cation- and model-specific coding.  The need to first reduce the data, then separately infer what is 
needed from only those reduced features, requires data scientists to develop entirely different mod-
els and inference procedures other than those best suited to the data. 

To date, advanced data science algorithms like spatiotemporal and/or Bayesian models are often 
not scalable to DOE leadership computing data.  Even in flagship DOE codes, some of the simplest 
algorithms, such as principal component analysis (PCA),89 are sufficiently onerous to modelers 
that they have never been implemented in-situ; and there is a vast gap in complexity between PCA 
and the data science applications discussed earlier.  We are aware of only one petascale Bayesian 
inference application,76 for offline astronomical imagery.  The popular Gaussian process (GP) 

Figure 2. Bursty bulk flows (BBFs) of 
plasma in the Earth’s magnetosphere can 
drive strong electric currents that damage 
satellites, simulated here by the SHIELDS 
model.50  Understanding the hazard to 
space operations depends on quantifying 
the likelihood of intense BBFs, their rela-
tionship to large-scale flows, and their de-
pendence on the upstream solar wind. 
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model of spatiotemporal data is inefficient in its original form, requiring a host of modifications 
to be more scalable.65  But common distributed and streaming (online) variants of these statistical 
algorithms, needed to achieve HPC performance, assume data points are independent or else can 
be accessed in any order or loaded on any node desired.35,25,39,71  This does not apply to physical 
simulation output, which is sequential in time, and data at fixed locations in the physical domain 
always live on the same nodes (spatial partitioning) determined by the HPC code.  Since simulation 
data are inherently spatiotemporal, and the primary obstacle to “embarrassingly parallel” inference 
is correlations in space and time, we are missing the fundamental building block of more general 
inferential analysis in HPC codes:  scalable, distributed, streaming spatiotemporal inference. 
There are currently no high-level programming environments for in-situ analysts to write general, 
arbitrary, high-performance inferential algorithms.  High-level languages would provide much 
greater productivity than doing data science in Fortran/C++.  A number of in-situ software infra-
structures have been developed,4,30,90,67,88,1 but most are oriented towards visualization or low-level 
tasks like I/O management.  Python is an increasingly popular option for scientific programming, 
but is not natively efficient on numerical HPC problems.  Custom frameworks like Numpy and 
TensorFlow have emerged to fill this gap, but are essentially separate programming languages 
implemented in C++ and wrapped in Python.  This forces programmers to work within a highly 
restricted subset of features provided by these libraries to achieve performance, preventing these 
frameworks from automatically interoperating, and making it difficult to take full advantage of 
Python’s data science ecosystem.73 Another challenge is that current compilers often miss large 
performance and portability opportinuties for parallel codes,80,81 preventing data scientists from 
writing general efficient code without enlist-
ing labor-intensive software engineering as-
sistance from computer scientists. 

Preliminary studies 
Our team has a strong track record in the 
building blocks necessary for in-situ infer-
ence. In addition to general expertise in spa-
tiotemporal modeling,36,61,38 we have devel-
oped an in-situ inference framework for 
compactly modeling the time variation of 
features in simulation data using a simple statistical model, piecewise linear regression (Fig. 3).68  
We have also developed sparse Gaussian process methods to fit to offline simulation output (Fig. 
4),55 although they are not yet fully scalable for HPC.  We have developed an approach to using 
high-resolution timestep-level sampling of simulation output to construct a dynamical reduced 
model of the simulation.24  In E3SM we have implemented in-situ feature extraction for eddy 
detection.91  We have developed intelligent data sampling algorithms under the in-situ ALPINE 
project. 60,10,11  For modeling the data and performing in situ distribution-driven data summariza-
tion we have also explored Gaussian mixture model (GMM) based in-situ inference techniques 
that have produced promising results.26,28  The distribution-based data summaries were used suc-
cessfully to find important features in the data set, track these features, and also to reconstruct the 
full-resolution data for visual exploration.  We have also explored in-situ predictive feature detec-
tion using fuzzy-rule based systems where the training was done off-line and the prediction for 
ensemble simulation runs was performed in situ.27  We have also recently demonstrated advances 
in using concurrency-aware compilation techniques to speed up parallel codes.81,54 
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Figure 3. Piecewise linear regression is a simple inference 
application that can be implemented in-situ to compactly 
model HPC simulation time series data. 
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Proposed Innovation 
Scientists have been forced to change 
their analysis methods to accomodate 
the limitations of in-situ feature ex-
traction, which is both scientifically 
inadequate, due to loss of information, 
and very labor-intensive.  We propose 
another path, which approaches the 
data science ideal:  Allow data scien-
tists to write down the model they need, 
and let them fit it directly, to the data 
they need, without discarding infor-
mation.  This enables new science appli-
cations, requiring full interactive access to simulation data, and greatly simplifies analysis and 
methods, with no need to deal with reduced or missing data. 
To realize this vision, we will create fundamental building blocks of in-situ inference appropriate 
for exascale physical simulations:  generalizable spatiotemporal statistical models and fast Bayes-
ian inference algorithms.  To work in-situ, the algorithms must be scalable, distributed, streaming 
(since simulation state variables are overwritten each timestep), and compatible with common 
HPC model data layout and internode communication patterns.  Fast approximations may be re-
quired in order to perform inference without significant impact on the simulation runtime. 
(Innovation 1) Since physical simulations generate spatiotemporal data, the workhorse in-situ sta-
tistical model we will create is a Bayesian probabilistic spatiotemporal model.  We will develop a 
deep sparse Gaussian process (SGP) model of spatiotemporal data,5,23 with linear-complexity com-
putational scaling properties,18 and adapt it for HPC use by (1) modifying distributed SGP algo-
rithms to work with spatially-partitioned data from HPC domain decompositions, (2) modifying 
streaming SGP algorithms for temporally autocorrelated data, and (3) developing new deep learn-
ing methods to replace expensive correlation calculations between off-node data with compressed 
features of the data optimal for the inference problem being solved.  These innovations will solve 
many of the technical issues that arise in more general in-situ inference problems, because distrib-
uted and streaming computations are particularly challenging in the HPC setting due to the 
spacetime correlations amongst data that our spatiotemporal model is designed to handle. 
Our spatiotemporal model can be fit directly to simulation output, or can be u a building block in 
a more complex inference pipeline: a hierarchical Bayesian spatiotemporal model.3  We will do 
the latter, building a statistical model for the entire probability distribution of a simulation variable, 
where the parameters of the probability distribution themselves vary smoothly over space and time 
according to our spatiotemporal model.  We will use variational inference (VI), an optimization-
based approximate inference algorithm 100–1000× faster than Markov chain Monte Carlo12,57,72 
and highly concurrent.  We will exploit the natural analytic variational formulation of our spatio-
temporal model to accelerate inference, leaving the development of fully general VI to future work. 
(Innovation 2) We will increase productivity by enabling scientists to write high-level, performant 
numerical algorithms in the Julia scientific computing and data science language,9 providing seam-
less abstractions to interweave numerical computing,74,8 ML,45,44,75 concurrency,17 and GPU exe-
cution6,77,31 at HPC scale.76  We will provide lightweight hooks, data-access abstractions, and 
shared memory concurrency primitives to execute parallel Julia code coupled to simulations, 

Figure 4. Sparse Gaussian processes are scalable statistical mod-
els of massive spatiotemporal data we will fit in-situ during sim-
ulation.  Users trade fast approximation (left) for inference 
quality (right) by increasing the statistical model complexity.   
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hiding implementation details from in-situ programmers.  The result will be to provide a higher 
level of abstraction between data science and HPC implementation to allow data scientists to focus 
more on statistical modeling and inference, reducing time and labor to implement new forms of 
analyses and getting them to perform well on new architectures. 
Technical impact 
The technologies developed here would dramatically advance in-situ data science capabilities.  
Right now most in-situ analyses are essentially hand-crafted.  Higher-level statistical modeling 
and inference libraries, designed to be scalable and portable across HPC codes, will allow data and 
domain scientists to focus on modeling the problems they want to solve, instead of on implemen-
tation details, greatly accelerating scientific productivity. 
Mission impact 
Large-scale simulations span all LANL mission areas in simulation and computation, including 
environmental and space science, nuclear science, materials science, etc.  They will increasingly 
produce an unprecedented amount of data, but only a fraction can be analyzed offline.  In-situ 
inference will permit full analysis of simulation data with the most advanced statistical and ML 
algorithms available.  Arguably an in-situ inference capability will be required for almost any 
exascale science that requires fitting sophisticated statistical models to simulation data. 

R&D Methods and Anticipated Results 
We will focus our science applications on a general class of grand challenge problems involving 
the thorough statistical characterization of spatiotemporal events in simulation data.  To demon-
strate generality, we will apply our methods to two different HPC codes, E3SM and SHIELDS. 
E3SM is a new Earth System Model that was developed to focus on science questions relevant to 
the DOE mission including risks to water and energy security, which are dependent on many pro-
cesses (e.g., hurricanes, thunderstorms, atmospheric blocking, atmospheric rivers) that span many 
orders of magnitude in spatial and temporal scales.  Most of these processes require high resolu-
tion, less than 25 km in the horizontal, and hours to days in time over a century-scale simula-
tion.  With E3SM we will focus on characterizing the risk of mid-latitude winter weather extremes 
(blizzards and polar-vortex cold snaps)20,92,49 and how it varies over space and time, as a function 
of changes to sea ice and other large-scale modes of climate variability.79,53 
The SHIELDS framework50 represents an end-to-end model of the Earth’s magnetosphere86 driven 
by the dynamic solar wind. We will characterize the likelihood of intense small-scale flow struc-
tures called bursty bulk flows (BBFs) that can produce strong electric fields hazardous to power 
and gas lines, and can energize charged particles that damage satellites.51  To capture the small-
scale flow channels and understand their spatiotemporal correlations, the near magnetotail must 
be resolved at the scale of a few hundred km, and BBF evolution over seconds to minutes. How-
ever, strong BBFs do not constantly occur, and their characteristics and occurrence depend non-
linearly on solar wind driving. Therefore many geomagnetic storms, lasting several days each, 
must be simulated to capture the parameter space of current densities and flow velocities in BBFs. 
Methods 
Statistical model. Let Y(x,t) be a spacetime field of interest, such as precipitation or electron flux.  
The inference problem is to estimate the conditional probability distribution p(Y(x,t)|Z), where Z 
is a high-dimensional vector of predictor variables, such as the full 3D atmospheric or geomagnetic 
state influencing Y.  The probability distribution can be non-Gaussian, different at every location 
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and time, and dependent on the simulation state Z.  
The statistical model allows us to ask questions 
about the probability of, say, a 20” snowfall event 
(Y) anywhere on the globe at any time, and quantify 
how sensitive that probability is to changes in sur-
face and stratospheric temperature, sea ice extent, 
the phase of global climate patterns like the Arctic 
Oscillation, etc. (Z).  Extreme fluctuations in Y will 
be captured by a generalized extreme value distribu-
tion GEV(Y;𝜑) whose parameters 𝜑 quantify prop-
erties like the expected frequency or return period 
of rare events.  Importantly, estimating the GEV pa-
rameters at each location in space independently 
would lead to very noisy estimates, since rare events 
give rise to small sample sizes.  We will regularize 
the GEV parameter estimates by smoothing them in 
space and time using a Gaussian process spatiotem-
poral model, assuming that nearby points have 
highly correlated extreme parameters.21  The GEV 
parameters become latent spatiotemporal fields, 
{𝜑(x,t)|Z}:	fields of unobservable, uncertain statis-
tical parameters rather than simulation variables like 
Y (Fig. 5).33  Fitting a spatiotemporally-varying ex-
treme value distribution is important in its own right 
for our application, but is also a proxy for more 
complex probabilistic estimation problems.  We will use a similar spatiotemporal smoothing ap-
proach to model the non-extreme or “central” part of the distribution, as a mixture of Student-t 
distributions (to capture heavy tails).70  

Spatiotemporal model. The core of our statistical 
model is a probabilistic model of spatiotemporal 
data.  We are not fitting the spatiotemporal simu-
lation variables directly (Y), but rather we are in-
ferring the latent distributional parameters 𝜑 dis-
cussed above, which vary in space and time.  For 
spatiotemporal modeling we will use a more ex-
pressive “deep” version23 of the sparse Gaussian 
process (SGP); Figs. 4,6.5,18,85,82  An SGP models 
a high dimensional, potentially noisy data set of 
size N using a smaller number (M≪N) of “artificial” 
data points, or “pseudo-data”, greatly improving the 
scalability of Gaussian  processes since correlation-
related calculations only need to take place between 
relatively few pseudo-data points, instead of the full 
data.  The full data are approximated by a smooth 
interpolation of the pseudo-data, assuming nearby 
points are correlated with each other according to a 

Sparse pseudo-data Data
Probabilistic Gaussian process model of data

Space or Time

Model 
variable

or
Statistical 

parameter

Figure 6. A sparse Gaussian process (SGP; red 
curve) compactly represents spatial or temporal 
data (blue dots) by interpolating a small number of 
representative "pseudo-data" points (red dots) 
learned from data.  SGPs maintain a probabilistic 
representation of data uncertainty (dashed error 
bars) and correlations.  We will use SGPs to infer 
smooth variations in unknown quantities (red 
curve), like the return period of extreme events, 
from noisy statistical estimates (blue dots). 

Figure 5. The main statistical model we will de-
velop will characterize the probability density 
function (PDF) of events in a simulation, how that 
PDF varies in space and time, and its dependence 
on large-scale features of the simulation data. 
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covariance function fit to data.  Pseudo-data are not a subset of the full data; they are inferred from 
a variational optimization procedure to minimize reconstruction error of the original data. 
Scaling the statistical model. Further scalability will be achieved by a linear-time variant of 
SGP18 and a fast iterative Krylov method.84  However, SGP still involves inferring the potentially 
millions of parameters (mostly pseudo-data), which requires distributed computation.  Further-
more, correlations across multiple timesteps cannot be directly calculated since state variables are 
overwritten every timestep.  Our approach to both of these challenges is to derive low-dimensional 
summary statistics that approximate the information needed for inference that is contained in off-
node data (to minimize distributed communication) or past-time  data. 
In the distributed setting we will develop a version of “global-local” inference83,34 (Fig. 7): each 
node will fit independent SGPs to the data living on-node, which initially will not lead to a globally 
consistent inference.19  We will use SGP pseudo-data as summary statistics, and pass a subset of 
them between nodes as stand-ins for the full off-node data when performing inference.  Each node 
will then re-fit its data using this additional global information.  For streaming inference, it will 
not be practical to retain in memory the pseudo-data at all previous timesteps.  We will apply the 
streaming sparse Gaussian process (SSGP),15 which uses a single, carefully constructed set of 
pseudo-data to summarize information about the posterior distribution (not the data itself) con-
tained in all previous timesteps.  However, SSGP assumes each spatial snapshot of data is inde-
pendent in time.  We will modify SSGP to accommodate a first-order Markov process allowing 
successive snapshots to be correlated in time (with a possible linear trend), similar to a Kalman 
filter assumption.37 
Scalable Bayesian inference. To in-
fer the parameters of the GEV and 
central distribution models,33  we will 
use variational inference (VI), an ap-
proach to Bayesian inference in 
which the true posterior distribution 
is approximated within a specified 
class of distributions.12 Inference be-
comes an optimization to find the 
best fit within the class.  In distrib-
uted inference we communicate SGP 
pseudo-data between nodes, but these 
data are not necessarily the minimal 
sufficient statistics needed to perform 
inference, leading to unnecessary in-
ternode communication.  We will ap-
ply deep neural networks (DNNs) to 
learn smaller sufficient statis-
tics.14,48,16,2  VI optimizes statistical 
model parameters by maximizing an 
objective function, the evidence lower bound (ELBO), via iterative gradient ascent.		We will train 
a pair of neural networks to directly predict the gradient that a node needs to update its own pa-
rameters.  A summarization network will compress off-node data, to be globally communicated 
between nodes, and a gradient prediction network will estimate the ELBO gradient for VI, as a 

Exchange 
summary 

statistics about 
off-node data

Local fits
(on-node)

Re-fit globally

Node 1 Node 2 Node 3

Node 1 Node 2 Node 3

Figure 7. We will take a 3-step approach to distributed inference: 
(1) Each node fits a local statistical model to all of its own data, 
neglecting correlations with off-node data, which may lead to dis-
continuous fits across nodes.  (2) Each node computes summary 
statistics of its own data, such as sparse Gaussian process pseudo-
data or ML sufficient statistics, and exchanges these low-dimen-
sional summaries with other nodes at low communication over-
head. (3) Each node adjusts its inference using off-node summary 
statistics to produce a globally-consistent fit. 
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function of on-node data and the off-node data summarized by the first network.42,43,64,66  The 
DNNs will be trained to reproduce the true ELBO gradients from synthetic training data simulated 
offline from a variety of representative SGP models,43 at a variety of simulated resolutions, [13 
rather than always the highest (HPC code) resolution, to accelerate training. 

The computational foundations of in-situ science. Our goal is to allow in-situ programmers to 
write ordinary analysis 
code without, to the ex-
tent possible, needing 
to directly interact with 
an HPC code. Inspired 
by Ascent,59  the AL-
PINE many-core in-situ 
analysis infrastructure, 
we will develop a ge-
neric abstraction layer 
to two-way couple the 
Julia language runtime to 
Fortran/C++ HPC codes 
(Fig. 8), with specialized data access interface layers that can be written to traverse code-specific 
data structures and memory layouts, e.g., unstructured mesh data.   Our lightweight in situ abstrac-
tion layer will provide simple state variable and mesh retrieval functions across these simulations 
by communicating with the model couplers directly, returning zero-copy data.  Using our scheme, 
simulation data will appear to the in-situ programmer as normal Julia objects.  A lightweight data 
processing workflow will avoid expensive data copies by directly manipulating simulation data 
pointers, making it easy to couple with HPC codes.  We will implement a  “blocking” in-situ 
system where simulations pause to run in-situ analysis, but will also explore asynchronous opera-
tion where in-situ analysis runs from a non-blocking call in parallel with the main execution.	
For between-node, or distributed, concurrency we use Julia’s abstraction capabilities and MPI 
wrappers to construct data types that appear as a single shared-memory object to the user, manag-
ing MPI distributed communication “under the hood”.  One bottleneck in the in-situ inference is 
the computation of SGP covariance matrices and their inverses.  We will use iterative Krylov 
methods to compute fast linear solves with a high degree of parallelism.29,22,63 

To address the obstacle for in-situ programmers created by the lack of compiler support for parallel 
optimizations and portability, we will extend LANL’s LLVM-based Kitsune project54 to take ad-
vantage of advanced parallel-aware compiler optimizations. Because Julia uses LLVM, we will 
implement a frontend for the shared memory concurrency primitives in Julia's standard library,52,17 
compiling to Kitsune’s parallel intermediate representation.  This ensures portability of data sci-
ence codes by targeting multiple backends, including OpenMP, allowing the HPC simulation's 
shared memory concurrency to interoperate with the in-situ analyses.  This is an important consid-
eration when composing multiple software components on a node:  if they use different runtimes, 
those runtimes can compete for resources, hurting performance.  Kitsune’s ability to target multi-
ple runtimes ensures that we target the same runtime the application uses, allowing for fine-
grained, low-overhead synchronization between the in-situ analysis and the application. In addi-
tion to better portability, we expect the parallel-aware optimizations will provide performance im-
provements not available to standard vendor compilers.  Examples of optimizations Kitsune is able 

Figure 8. In-situ inference will sit alongside the HPC simulation through a light-
weight data abstraction layer, sharing model state variables with a statistical 
model implemented on top of a variational inference engine.  The output of the 
in-situ inference will be a trained statistical or ML model. 
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to perform that standard compilers are not include parallel loop-invariant code motion, sync elim-
ination, and constant propagation to concurrent code, leading to large performance improve-
ments.80,81  When combined with an LLVM-based Fortran compiler,32 this opens the possibility of 
optimizations that cross between in-situ analysis and the HPC code, and flexibility in runtime 
choice, both of which can greatly increase performance.81    
Expected Results 
The deliverables are (1) two fitted probabilistic models of the distribution of extreme and non-
extreme events and the dependence of that distribution on space, time, and external predictor var-
iables; (2) scalable, distributed, streaming inference algorithms to fit these models (including a 
new scalable spatiotemporal model); (3) a high-level programming framework for in-situ data sci-
ence; (4) prototype code implementing (1)-(3) within the E3SM and SHIELDS simulation codes; 
and (5) statistical analyses of blizzards and bursty bulk flows using (1).  The methods will consti-
tute individually novel contributions to statistics, ML, and HPC computer science, contributing 
new results to climate and space weather science that would not otherwise have been possible.   
Risk Assessment and Mitigation 
Part of the project mitigation will be to decouple deliverables:  much of the inference, including 
distributed inference, can be developed and tested offline before coupling into HPC codes.  The 
ML component may be pursued independently without necessarily being implemented in-situ. 
Scalability. Potential barriers to scalability are whether passing summary statistics will incur too 
much communication overhead, or VI over a large number of SGP pseudo-data parameters will 
slow down the simulation unacceptably.  The initial mitigation plan is to reduce the number of 
pseudo-data until performance is acceptable.  This will reduce fidelity in the statistical model (con-
trollably, with an automatic probabilistic estimate of the approximation error introduced), which 
may be acceptable in some applications with less complex structure.  ML-guided summary statis-
tics are one way we hope to circumvent potential communications barriers, by reducing distributed 
data exchange to the minimum needed to preserve validity of the inference. 
Spatiotemporal model complexity. Our statistical model will take effort to get running in-situ in a 
distributed, streaming HPC setting.  If this takes more time than anticipated, we will take a two-
pronged-approach:  develop the full model on (smaller) offline data, and  reduce the complexity 
of the in-situ model by focusing on just the spatial part, neglecting nonstationary changes in time; 
we can construct steady-state simulations to produce data lacking strong time trends. 
In-situ software framework and HPC coupling.  A potential risk is the relative youth of the Julia 
language.9  Julia has exhibited significant maturity for HPC:  Petascale Bayesian VI on DOE lead-
ership computing;76 competitive ML performance with Python frameworks;45,31 and selected for 
an E3SM-class climate model with beyond-Fortran performance.69,78  But it has not yet been cou-
pled to a legacy DOE HPC code.  We have compiler experts to mitigate risk, but in case of unan-
ticipated challenges that could delay the project, we will implement inference using a more ortho-
dox approach: Python (Ascent),59 with C++ ports of code hotspots.  This will not achieve the full 
performance and generality possible with Julia, but provides a path to in-situ inference.  A rapid 
technical risk assessment at the project start will inform this decision. 

Project plan 
Urban will lead the project.  Lawrence will lead the inference with Grosskopf on spatiotemporal 
and variational methods, and Dorn on distributed inference with summary statistics.  Biswas will 
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lead the in-situ framework with McCormick, Stelle, and Dutta on high-level programming lan-
guage abstractions, parallelism, and in-situ expertise.  Oyen, Urban, and Dorn on ML-guided 
inference.  Urban and Van Roekel will lead the climate application with Wolfe on E3SM cou-
pling; Jordanova, Henderson, and Morley will lead the space weather application. 

The project will have three R&D areas that will converge as the project progresses.  These are (1) 
using the probabilistic model to study science questions, (2) scalable HPC-ready inference algo-
rithms, and (3) the in-situ computational framework and high-level programming abstraction layer. 

Year 1. Begin developing the inference algorithm for the full statistical model on offline simulation 
data, without requiring scalability.  Initial focus is on fitting the the spatial part of the model, 
neglecting time.  Start developing a distributed (but not streaming) SGP model.  Begin coupling 
the Julia runtime environment into one of the target HPC codes, and implement within it a simple 
inference algorithm, such as linear regression or fitting (spatially-independent, stationary) extreme 
value distributions.  We will begin developing shared memory concurrency abstractions. 

Year 2. Improve the main scientific analysis for both applications by including time variations into 
the probabilistic model.  Begin adding streaming inference to our distributed offline algorithm and 
improve its scalability with linear-complexity and/or Krylov methods.  Begin developing ML sum-
mary statistics through offline synthetic training.  Insert a simplified version of a distributed GP 
model in-situ in a model as an intermediate deliverable.  Continue developing concurrency. 

Year 3. Improve the scientific analysis by including covariate information (large-scale state data).  
We will complete the scaling of the distributed, streaming SGP model and insert it in-situ.  We 
will complete the ML summary statistics model (offline).  We will extend the high-level abstrac-
tion layer to remove some of the initial hard-coding of algorithms (e.g. parallel linear algebra). 

Data management plan 
We will request 250 TB of campaign storage on LANL IC for our new simulations, statistical 
models, and training data (existing model output), in standard formats such as NetCDF.  Code will 
be open-sourced on Github and trained statistical models made available on Zenodo. 
Transition plan 
G. Shipman is LANL’s point of contact (POC) for computational partnerships between applied 
math, computer science, and domain science in the ASCR program, a natural follow-on to this DR.  
P. McCormick (a team member) is LANL’s ASCR POC for computer science and can represent 
the proposal there.  In-situ analysis was the subject of a recent ASCR workshop,46 so this project 
will be well-positioned for follow-on funding.  R. Friedel (CSES Director) will help connect to 
potential opportunities in NASA and other agencies interested in the space weather problem. This 
effort also has strong connection to DOE’s programs in climate and earth sciences (BER; E. 
Hunke),  which is prioritizing increasing prediction fidelity to assess climate impacts. S. Vander 
Wiel serves as the Advanced Certification Campaign UQ Project Lead, and will help identify ap-
plications in the weapons program will be suitable for follow-on work. 

Budget Request 
$1.615M/y will fund 13 TSMs (at 10-30% levels) and 3.5 postdocs. We request travel (~$30K/y) 
and M&S (~$30K/y); M&S covers the purchase of computers for postdocs and publication costs. 
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Glossary of acronyms 
ASCR = Advanced Scientific Computing Research (DOE program) 

BER = Biological and Environmental Research (DOE program) 

BBF = bursty bulk flow (space weather event) 

DNN = deep neural network 

CSES = Center for Space and Earth Sciences (LANL institute) 

E3SM = Energy Exascale Earth System Model (DOE climate model) 

ELBO = evidence lower bound (variational objective function to maximize) 

ECP = Exascale Computing Project (DOE program) 

GEV = generalized extreme value (distribution) 

GP = Gaussian process (spatiotemporal statistical model) 

GPU = graphics processing unit (hardware accelerator) 

HPC = high performance computing 

IC = Institutional Computing (LANL) 

LANL = Los Alamos National Laboratory 

M&S = materials and supplies 

MHD = magnetohydrodynamics 

ML = machine learning 

NN = neural network 

MPI = Message Passing Interface (HPC distributed communication protocol) 

POC = point of contact 

PDF = probability density function 

SGP = sparse Gaussian process 

SHIELDS = Space Hazards Induced near Earth by Large Dynamic Storms (space weather model) 

SSGP = streaming sparse Gaussian process 

TSM = Technical Staff Member 

UQ = uncertainty quantification 

VI = variational inference 
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Appendices  
 
Computing Resource Needs  
Although the motivation for the project is exascale computing, most of the development will be 
on less-expensive model configurations, since it is too demanding to routinely run the highest 
resolution configurations every time we modify the in-situ software or statistical model. 
The E3SM low-resolution configuration (~3.6 million atmospheric degrees of freedom per varia-
ble) requires ~23,000 core-hours per simulated year.  A simulation sufficient to capture the statis-
tics of extreme events would be ~100 simulated years, or 2.3 million core-hours.  However, a 
simulation of this length is only needed for the science campaigns, which only need to be per-
formed perhaps twice over the duration of the project.  Most of the algorithm development can be 
tested on much shorter (say, 5-year) integrations.  We will budget for 300 simulated years at low 
resolution, or 6.9 million core-hours over the span of the 3-year project.  The E3SM high-resolu-
tion configuration (~58 million atmospheric degrees of freedom) requires ~2.8 million core-hours 
per simulated year.  We will only demonstrate inference on 5 simulated years at high resolution, 
requesting an 14 million core-hours from ASCR Leadership Computing Challenge (ALCC). 
SHIELDS requires 11,000 core hours for 1 simulated day, which is the typical duration of a geo-
magnetic storm.  To resolve bursty bulk flows the SHIELDS framework will require a minimum 
spatial resolution of 1/8 Earth radii in the near-tail region. This can be achieved using a targeted 
simulation grid of approximately 4 million cells in the global MHD component of SHIELDS. This 
configuration requires ~11,000 core-hours per simulated day. For the final science campaign we 
will use higher resolution simulations (~6M cells, ~17k core-hours/day). To capture the statistics 
of extreme BBFs we will require sets of simulations for different solar wind drivers, dipolar tilt 
angles, and preconditioning levels. Constructing upstream boundary conditions (solar wind driv-
ers) to capture different types of preconditioning, for a range of dipole tilt angles, will give a set 
of initial model configurations that can be used for subsequent simulations of the effects of solar 
wind types known to produce extreme activity, such as interplanetary coronal mass ejections. We 
here budget for a total of 45 stormtime simulations (135 days) at 6M cell resolution, corresponding 
to ~2.3 million core-hours for the science campaign. Algorithm development can be tested on 
individual storm simulations (~3 days, or 33k core-hours each) using the 4M cell configura-
tion.  We here budget for 40 stormtime simulations at 4M cell resolution for algorithm develop-
ment and testing, corresponding to ~1.3 million core-hours over the span of the project. The total 
computing resources required for the space weather modeling is 3.6 million core-hours. 

People  
In addition to the technical capability described in the narrative, this project will provide a tremen-
dous opportunity to develop the staff and collaborations that are necessary for the Lab’s future 
success. All members of the project will be able to advance as scientists in the pursuit of this 
project’s goals. Further, LANL will have the opportunity to establish a leadership position at the 
nexus of high performance computing and data analysis. 

This project will provide support for three new postdocs and one existing postdoc. By the nature 
of the project, this support will provide an opportunity to recruit new potential new staff mem-
bers with multidisciplinary skills critical to Lab success. One current (Dutta) and one new post-
doc will support the computer science mission of the proposal. These postdocs will develop 
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skills implementing advanced statistical analyses in-situ. This will provide experience with sta-
tistics and machine learning outside the typical CS research framework. Two other postdocs will 
support the statistics and machine learning missions. These postdocs will gain experience devel-
oping new methods with the constraints and advantages provided by modern high performance 
computing. Both sets of post-docs will have a set of skills vital to the future of the Laboratory. 

The proposal will also provide similar support for numerous early career staff members. This 
staff includes Biswas, Dorn, Grosskopf, and Stelle. This support will promote cross-disciplinary 
skills. The statistics staff (Dorn, and Grosskopf) will develop the computational skills and expe-
rience needed to support advanced data analysis in future Lab computing environments. The 
computer science staff (Biswas and Stelle) will gain experience implementing and using ad-
vanced data analysis techniques and creating the support for these methods.  Collaborations be-
tween these early career staff have the potential to bear fruit for the Lab for many years.  Early 
career staff will also be placed in positions of leadership where possible.  They will be given op-
portunities to represent the project internally, as part of project reviews, and externally at confer-
ences. They will be encouraged to take the lead on developing follow-on and spin-off projects. 

Senior leadership will also have the opportunity for career growth. Urban and Lawrence are both 
leaders in uncertainty quantification. LANL is also at the forefront of this field. The project will 
strengthen that position nationally and internationally by advancing uncertainty quantification for 
the exascale era. McCormick is a leader in programming models and parallel computing. This 
project will provide an opportunity for to advance his expertise in a new direction. 

This proposal brings together a cross-disciplinary team from CCS, T, and ISR divisions. Within 
CCS, the proposal will strengthen a number of existing collaborations. PI Urban has worked ex-
tensively with CCS-6 in numerous areas and with the climate team from T-3. Likewise, Co-PI 
Lawrence has worked extensively with CCS-7 and the space weather modeling team from ISR-1. 
With this foundation, it should be easy to develop the total collaboration required for the project. 
These collaborations will strengthen both science and data analysis capabilities at the LANL. 

Finally, Urban and Lawrence have already begun to engage the larger academic community on 
this problem. We are currently running a seminar series sponsored by ISTI on the topic of in-situ 
inference. The series hosts experts working on scalable machine learning methods, including 
Gaussian process modeling, and fast inference and estimation methods. Although not a set of for-
mal collaborations, this series has connected us with researchers at the cutting edge of relevant 
methodology and has begun to lay the groundwork for future collaboration with outside partners. 
This will help establish LANL as a leader in the important field, and could be continued or ex-
panded into a recurring LANL-led conference. 

Biosketches, Level of Effort, and Project Roles 
Nathan Urban (PI, CCS-2, ~0.3 FTE) has 12 years of experience in statistical uncertainty quan-
tification (UQ), reduced-order modeling, climate science, and climate impacts analysis. His ac-
tivities at the lab connect physical science, numerical simulation, Bayesian UQ, and decision 
analysis to practical problems of national and policy interest. His research themes include multi-
model or model “structural” uncertainties, reduced order modeling for UQ, machine learning to 
improve numerical models, uncertainty analysis of computationally expensive numerical models, 
climate feedbacks and sea level rise, climate adaptation and risk management, and infrastructure 
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network analysis and resiliency design optimization. As a DOE Office of Science Early Career 
Researcher, he has played leadership roles both in LANL internal strategy for climate impacts, 
sea level and coastal science, climate resilience, and national security, as well as DOE Office of 
Science program development activities in the BER and ASCR divisions. He will lead the entire 
project, contributing to both the inference and software sides of the project. 
Earl Lawrence (Co-PI, CCS-6, ~0.25 FTE) has extensive experience in uncertainty quantifica-
tion and simulation-based inference since joining the Lab in 2005 and has published numerous 
papers in this area. He is an expert in the application of Bayesian inference and spatiotemporal 
models for inference using simulations. Applications include nuclear weapons, cosmology, space 
weather, and power grids. He led a successful LDRD on uncertainty quantification for power 
grids and led the UQ efforts for several LDRD projects. He is currently the uncertainty quantifi-
cation lead on two Office of Science projects on cosmology and nuclear theory. He is on the edi-
torial board of the SIAM/ASA Journal on Uncertainty Quantification and is the Chair of the 
American Statistical Association’s Interest Group on Uncertainty Quantification. He will lead the 
inferential development of the scalable Gaussian process and extreme value modeling. 
Ayan Biswas (Co-PI, CCS-7, ~0.3 FTE) is a data scientist with a Ph.D. in Computer Graphics 
and Data Visualization. His Ph.D. work focused on large-scale high-dimensional and multivari-
ate datasets and uncertainty visualization. He has extensive experience in information theory, 
HPC and data modeling. He is currently the sampling lead for the ALPINE project under Ex-
ascale Computing Project (ECP) that focuses on massive scale parallel distributed in-situ sam-
pling algorithms. His knowledge and expertise in such related topics allow him to understand the 
gaps in the existing literature and help fill that through this cutting-edge research. He will lead 
the development of the computational foundations for the in-situ framework. 
Diane Oyen (Co-I, CCS-3, ~0.15 FTE) develops machine learning algorithms for pattern discov-
ery in scientific data. She applies a variety of ML algorithms — including deep neural networks, 
autoencoders, and probabilistic graphical models —  to diverse data sets, including spatio-tem-
poral physics simulations, image analysis, spectroscopy, and cybersecurity. Oyen has extensive 
research in simultaneous learning of multiple high-likelihood machine learning models through 
sharing of summary statistics among models for efficient training. Oyen will contribute to the 
deep sparse Gaussian process with summary statistics passed among local inference algorithms. 
Mary Frances Dorn (Co-I, CCS-6, ~0.25 FTE) has experience modeling spatiotemporal data 
and developing and applying machine learning algorithms in a variety of applications. As part of 
her dissertation research, she developed classification methods that, instead of learning an un-
known underlying correlation structure, computes simple low-dimensional summaries of the 
complex data that allowed for scaling to high-dimensional problems. Since joining the Lab in 
2017, she has worked on modeling spatiotemporal data with applications including power outage 
forecasting during extreme weather events and employee injury incidents around the lab, and un-
certainty quantification for machine learning algorithms applied to nuclear non-proliferation de-
tection and physics-based models of material characteristics. She will work on methods for the 
machine-learning guided inference. 
Michael Grosskopf (Co-I, CCS-6, ~0.3 FTE) is an early career staff member with expertise in 
uncertainty quantification and inference with expensive simulators including emulations of mod-
els with multivariate outcomes and modeling latent functions using Gaussian process regression 
with non-Gaussian measurement distributions. Additionally, he is experienced in large-scale dis-
tributed computing with simulation models and working with domain scientists in computational 
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physics applications. He has also worked in applications with online data collection and infer-
ence for anomaly detection. 
Soumya Dutta (Co-I, CCS-7, ~0.5 FTE) is a postdoc research associate in the Data Science at 
Scale group under CCS-7 at Los Alamos National Lab. He has a Ph.D. in computer science and 
engineering and has expertise in multivariate data analysis, in situ analysis and visualization, and 
statistical data analytics which makes him suitable for this project. He has published in situ anal-
ysis papers in important visualization conferences and after joining LANL, he continues to con-
tribute heavily towards the in situ efforts of Data Science at Scale (CCS-7) group. He will con-
tribute to the development of the computational foundations of the in situ framework. 
George Stelle (Co-I, CCS-7, ~0.25 FTE) is an expert in the design and implementation of pro-
gramming languages and compilers. By representing concurrency semantics in the compiler, 
George will enable analyses and optimizations that would otherwise be missed. Applying 
George's skill set to the concurrency primitives in Julia, we expect performance and portability 
for our in-situ codes not available elsewhere. Having an expert in programming languages and 
compilers will also help mitigate the risk of using a relatively new language. 
Pat McCormick (Co-I, CCS-7, ~0.1 FTE) is a senior computer scientist at Los Alamos National 
Laboratory (LANL) with over 25 years of experience in high-performance computing, and is 
well known and respected for his work in programming models, early GPU programming, data 
visualization, and parallel systems. At LANL, he serves as the Programming Models team leader 
in CCS-7, and as the Program Manager for LANL Office of Science (SPO-SC), Advanced Scien-
tific Computing Research. McCormick has authored or coauthored numerous papers and has ex-
tensive project management experience including serving as the Deputy Director  for the Soft-
ware Technology area of the Exascale Computing Project from 2015-2017. He will be providing 
technical guidance on the research and development aspects of the in situ framework. 
Luke Van Roekel (Co-I, T-3, ~0.25 FTE) has extensive experience simulating the climate 
across scales, from the subgrid (<1km) to planetary scale.  He is a co-lead developer of the 
LANL developed Model for Prediction Across Scales-Ocean and a science group co-lead for the 
Energy Exascale Earth System Model (E3SM) project, which is DOEs new Earth System Model 
that was built to address DOE mission relevant questions.  On this project, he will lead the do-
main science application for climate, helping design simulations, and setup and configure the 
model. He will also advise CCS staff on how to interface the in-situ analysis code with E3SM, 
and will provide output for the first year to conduct the analysis offline to verify the newly devel-
oped statistical algorithms can interface with the E3SM output. 
Jonathan Wolfe (Co-I, T-3, ~0.25 FTE) has extensive experience in parallel high-performance 
software infrastructure and integration for climate change and energy related numerical simula-
tion, including research, design and development, verification and validation, production, cus-
tomer implementation. He has scientific model development/applications for industrial and na-
tional needs, including geothermal reservoirs models, flow through heterogeneous media, nu-
clear weapons stockpile stewardship, safety and waste-processing reactors, and wind forecasting. 
He will contribute to the analysis and interpretation of climate simulations and data. 
Michael Henderson (Co-I, ISR-1, ~0.1 FTE) has worked at Los Alamos National Laboratory 
since 1994 as a space physicist working on problems associated with magnetospheric storms, 
substorms and space weather. He has worked with data from a wide variety of space-borne in-
strumentation including: Viking/UVI, POLAR/CEPPAD, POLAR/CAMMICE, 
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CLUSTER/RAPID, LANL Geosynchronous CPA, SOPA, MPA and ESP instruments, IM-
AGE/MENA, Van Allen Storm Probes Mission, Magnetospheric Multiscale Mission, and mostly 
recently in planning activities for the CONNEX magnetospheric mapping mission. Dr. Hender-
son is an expert in the analysis of global auroral imagery and geosynchronous energetic particle 
and plasma data and has extensive experience working with many other ground-based and space-
based datasets. His research interests currently focus on: Assessing impacts of extreme space 
weather events (Carrington-Class Geomagenetic Storms) on power grid infrastructure; The rela-
tionship between storms, substorms, Steady Magnetospheric Convection events (SMCs), and 
sawtooth events; Simulation of inner magnetospheric energetic particle dispersion patterns; The 
extraction of radial diffusion transport coefficients from Van Allen Probes and LANL/GEO ener-
getic particle datasets using advanced data assimilation techniques.  He is the author of the 
LanlGeoMag library which provides extensive routines for very precise coordinate transfor-
mations, orbit propagation, magnetic field line tracing, and adiabatic invariant calculations. 
LanlGeoMag is a core library used extensively in the DREAM space weather model (radiation 
belt data assimilation), Van Allen Probes, Magnetospheric Multiscale Mission and other projects 
at LANL. Dr. Henderson is currently leading the large LDRD/DR space weather modeling effort 
(in its last year): "Impacts of Extreme Space Weather Events on Power Grid Infrastructure: Phys-
ics-Based Modeling of Carrington-Class Geomagnetic Storm Events" which utlizes the same 
space weather modeling infrastructure (Space Weather Modeling Framework or SWMF) we pro-
pose to use here. In the current proposal, Dr. Henderson will mainly be involved in the develop-
ment, analysis and interpretation of the magnetospheric simulations in the space weather portion 
of the work and in the integration of the in-situ algorithms as modules for use in the SWMF. 
Vania Jordanova (Co-I, ISR-1, ~0.1 FTE) has over twenty years of experience in theoretical, 
observational, and numerical studies of the Earth’s magnetosphere, ring current and radiation 
belt dynamics, wave-particle interactions, and processes that couple the ionospheric and magne-
tospheric regions. She created a state-of-the-art kinetic ring current-atmosphere interactions 
model (RAM) that simulates the transport of hot (kiloelectron-volt) ions and electrons in realistic 
electric and magnetic fields, taking into account all key source and loss processes. The RAM 
code is one of the main modules of the space weather modeling framework which aims at speci-
fying Space Hazards Induced near Earth by Large Dynamic Storms (SHIELDS). She has sub-
stantial leadership experience as the PI on many NASA and NSF projects and the LDRD-DR 
SHIELDS project, a 2017 R&D 100 Award winner. She has more than 130 scientific publica-
tions and has presented more than 40 invited talks at international conferences. She served on 
many NASA, NSF and DOE review panels, the NSF/Geospace Environment Modeling (GEM) 
Program Steering Committee, and was a member of the NASA Magnetosphere Working Group 
on Advanced Computational Exploration (ACCEHS, 2010). She will assist with the SHIELDS 
space weather simulations and their interpretation. She will also contribute to the analysis and 
interpretation of magnetospheric plasma data and model/data validation. She will assist with the 
application of the results from this effort to existing and future internal and external programs. 
Steve Morley (Co-I, ISR-1, ~0.3 FTE) has expertise in the large-scale responses of the magneto-
sphere and ionosphere to changes in the solar wind. His work has included development of novel 
models of ionospheric convection and substorm occurrence, and validation against observations, 
and development of inner magnetosphere and radiation belt simulations. He has worked exten-
sively on quantitative analysis of energetic particle and magnetometer data from a range of 
space- and ground-based instrumentation, and on the validation of predictive models. Recent 
highlights include developing prototype realtime versions of the DREAM and SHIELDS 
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modeling systems, and development of the first ensemble prediction system for geomagnetic dis-
turbances. He will contribute to the analysis and interpretation of space weather simulations and 
data. 

Technology Transfer 

1. Do you envision that this LDRD project might generate intellectual property (e.g. technology 
that can be patented or software that can be copyrighted)? (yes/no) 

If so, please explain (100 word limit) 

YES 

We will be developing new statistical algorithms for analyzing large-scale data sets, as well as 
source code for embedding these statistical algorithms inside high performance computing codes, 
and a general programming environment for doing statistics on data as it is being generated by 
another software code. 

2. Is there any encumbrance on the Laboratory's pursuit of that intellectual property (e.g. co-
invention with other organizations, dependence on intellectual property that originates outside 
the Laboratory)? (yes/no) 

NO 

3. Will engagement with industrial partners enhance your technology and/or help you to realize 
the full possibility of this line of research and development? (yes/no) 

YES 


